
Fundamental of Data Structures: Design and analysis

Sudebkumar Prasant Pal,
Department of Computer Science and Engineering, IIT Kharagpur, 721302.

ACM Summer School on Cryptology Research, ISI Kolkata

June 13, 2018

Scope of the lecture

I Binary search trees, Range trees and Kd-trees

We consider 1-d and 2-d range queries for point sets.

I Interval trees and Segment tree
Interval trees for reporting all intervals on a line containing a given
query point on the line.

I Paradigm of Sweep algorithms
For reporting intersections of line segments, and for computing
visible regions.

I Finger searching
Computing shortest path trees in linear time.

I Hierarchical searching
Planar point location

I 1
r
-cuttings, many faces complexity, incidences

Planar point location

Scope of the lecture

I Binary search trees, Range trees and Kd-trees

We consider 1-d and 2-d range queries for point sets.

I Interval trees and Segment tree
Interval trees for reporting all intervals on a line containing a given
query point on the line.

I Paradigm of Sweep algorithms
For reporting intersections of line segments, and for computing
visible regions.

I Finger searching
Computing shortest path trees in linear time.

I Hierarchical searching
Planar point location

I 1
r
-cuttings, many faces complexity, incidences

Planar point location

Scope of the lecture

I Binary search trees, Range trees and Kd-trees

We consider 1-d and 2-d range queries for point sets.

I Interval trees and Segment tree
Interval trees for reporting all intervals on a line containing a given
query point on the line.

I Paradigm of Sweep algorithms
For reporting intersections of line segments, and for computing
visible regions.

I Finger searching
Computing shortest path trees in linear time.

I Hierarchical searching
Planar point location

I 1
r
-cuttings, many faces complexity, incidences

Planar point location

Scope of the lecture

I Binary search trees, Range trees and Kd-trees

We consider 1-d and 2-d range queries for point sets.

I Interval trees and Segment tree
Interval trees for reporting all intervals on a line containing a given
query point on the line.

I Paradigm of Sweep algorithms
For reporting intersections of line segments, and for computing
visible regions.

I Finger searching
Computing shortest path trees in linear time.

I Hierarchical searching
Planar point location

I 1
r
-cuttings, many faces complexity, incidences

Planar point location

Scope of the lecture

I Binary search trees, Range trees and Kd-trees

We consider 1-d and 2-d range queries for point sets.

I Interval trees and Segment tree
Interval trees for reporting all intervals on a line containing a given
query point on the line.

I Paradigm of Sweep algorithms
For reporting intersections of line segments, and for computing
visible regions.

I Finger searching
Computing shortest path trees in linear time.

I Hierarchical searching
Planar point location

I 1
r
-cuttings, many faces complexity, incidences

Planar point location

Scope of the lecture

I Binary search trees, Range trees and Kd-trees

We consider 1-d and 2-d range queries for point sets.

I Interval trees and Segment tree
Interval trees for reporting all intervals on a line containing a given
query point on the line.

I Paradigm of Sweep algorithms
For reporting intersections of line segments, and for computing
visible regions.

I Finger searching
Computing shortest path trees in linear time.

I Hierarchical searching
Planar point location

I 1
r
-cuttings, many faces complexity, incidences

Planar point location

1-dimensional Range searching

a b

I Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

I Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

I However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.

1-dimensional Range searching

a b

I Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

I Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

I However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.

1-dimensional Range searching

a b

I Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

I Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

I However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

I We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

I Each internal node stores the x-coordinate of the rightmost
point in its left subtree for guiding search.

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

I We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

I Each internal node stores the x-coordinate of the rightmost
point in its left subtree for guiding search.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

I Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

I Here, the points inside R are 14, 12 and 17.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

I Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

I Here, the points inside R are 14, 12 and 17.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

I Using two 1-d range queries, one along each axis, solves the
2-d range query.

I The cost incurred may exceed the actual output size of the
2-d range query.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

I Using two 1-d range queries, one along each axis, solves the
2-d range query.

I The cost incurred may exceed the actual output size of the
2-d range query.

2-dimensional Range Searching: Kd-trees

1

2

3
4

5

6

7

8

9

10

11

12

13
15

16

17

14

L R

RU

RD

LU

LD

8

LU LD RU RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

2-dimensional Range Searching

I The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

I The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S , so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

I The entire plane is called the region(r).

2-dimensional Range Searching

I The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

I The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S , so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

I The entire plane is called the region(r).

2-dimensional Range Searching

I The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

I The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S , so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

I The entire plane is called the region(r).

Answering rectangle queries

24

16

17

L R

RU

RD

LU

LD

10

18

19

20

21

22

23

25

26

28

27

29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4

6

5

1

15

14

13

12

11

2

u

v

I A query rectangle Q may overlap a region or completely
contain a region.

I If R contains the entire bounded region(p) of a point p
defining a node of T then report all points in region(p).

Answering rectangle queries

24

16

17

L R

RU

RD

LU

LD

10

18

19

20

21

22

23

25

26

28

27

29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4

6

5

1

15

14

13

12

11

2

u

v

I A query rectangle Q may overlap a region or completely
contain a region.

I If R contains the entire bounded region(p) of a point p
defining a node of T then report all points in region(p).

2-dimensional Range Searching: Kd-trees [1]

24

16

17

L R

RU

RD

LU

LD

10

18

19

20

21

22

23

25

26

28

27

29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4

6

5

1

15

14

13

12

11

2

u

v

I The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y -coordinate in the set L (R), and including u in LU (RU).

I The entire halfplane containing set L (R) is called the
region(u) (region(v)).

2-dimensional Range Searching: Kd-trees [1]

24

16

17

L R

RU

RD

LU

LD

10

18

19

20

21

22

23

25

26

28

27

29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4

6

5

1

15

14

13

12

11

2

u

v

I The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y -coordinate in the set L (R), and including u in LU (RU).

I The entire halfplane containing set L (R) is called the
region(u) (region(v)).

Time complexity of rectangle queries

1

3
4

5

6

7

8

9
11

12

13
15

16

17

14

L R

RU

RD

LU

LD

10

2

8

LU LD RU RD

RL

S

2 14 6

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

10

Time complexity of output point reporting

I Reporting points within R contributes to the output size k for
the query.

I No leaf level region in T has more than 2 points.

I So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T .

I This cost is borne for all leaf level regions intersected by R.

Time complexity of output point reporting

I Reporting points within R contributes to the output size k for
the query.

I No leaf level region in T has more than 2 points.

I So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T .

I This cost is borne for all leaf level regions intersected by R.

Time complexity of output point reporting

I Reporting points within R contributes to the output size k for
the query.

I No leaf level region in T has more than 2 points.

I So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T .

I This cost is borne for all leaf level regions intersected by R.

Time complexity of output point reporting

I Reporting points within R contributes to the output size k for
the query.

I No leaf level region in T has more than 2 points.

I So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T .

I This cost is borne for all leaf level regions intersected by R.

Time complexity of traversing the tree

1

3
4

5

6

7

8

9
11

12

13
15

16

17

14

L R

RU

RD

LU

LD

10

2

8

LU LD RU RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

I It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

I Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

I Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).

Time complexity of traversing the tree

1

3
4

5

6

7

8

9
11

12

13
15

16

17

14

L R

RU

RD

LU

LD

10

2

8

LU LD RU RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

I It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

I Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

I Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).

Time complexity of traversing the tree

1

3
4

5

6

7

8

9
11

12

13
15

16

17

14

L R

RU

RD

LU

LD

10

2

8

LU LD RU RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

I It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

I Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

I Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).

Time complexity of rectangle queries

v

lc(v)

R1 R2

I Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

I The solution for T (n) = O(
√

(n)).

I The total cost of reporting k points in R is therefore
O(
√

(n) + k).

Time complexity of rectangle queries

v

lc(v)

R1 R2

I Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

I The solution for T (n) = O(
√

(n)).

I The total cost of reporting k points in R is therefore
O(
√

(n) + k).

Time complexity of rectangle queries

v

lc(v)

R1 R2

I Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

I The solution for T (n) = O(
√

(n)).

I The total cost of reporting k points in R is therefore
O(
√

(n) + k).

Range searching with Kd-trees and range
trees

I Given a set S of n points in the plane, we can construct a
Kd-tree in O(n log n) time and O(n) space, so that rectangle
queries can be executed in O(

√
n + k) time. Here, the

number of points in the query rectangle is k.

I Given a set S of n points in the plane, we can construct a
range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

I The query time can be improved to O(log n + k) using the
technique of fractional cascading.

Range searching with Kd-trees and range
trees

I Given a set S of n points in the plane, we can construct a
Kd-tree in O(n log n) time and O(n) space, so that rectangle
queries can be executed in O(

√
n + k) time. Here, the

number of points in the query rectangle is k.

I Given a set S of n points in the plane, we can construct a
range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

I The query time can be improved to O(log n + k) using the
technique of fractional cascading.

Range searching with Kd-trees and range
trees

I Given a set S of n points in the plane, we can construct a
Kd-tree in O(n log n) time and O(n) space, so that rectangle
queries can be executed in O(

√
n + k) time. Here, the

number of points in the query rectangle is k.

I Given a set S of n points in the plane, we can construct a
range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

I The query time can be improved to O(log n + k) using the
technique of fractional cascading.

Range searching in the plane using range
trees

a b

Given a 2-d rectangle query [a, b]X [c , d], we can identify subtrees
whose leaf nodes are in the range [a, b] along the X-direction.

Only a subset of these leaf nodes lie in the range [c , d] along the
Y-direction.

Range searching in the plane using range
trees

assoc(v)

v

T

T

p

p

p

p

T

Tassoc(v) is a binary search tree on y-coordinates for points in the
leaf nodes of the subtree tooted at v in the tree T .

The point p is duplicated in Tassoc(v) for each v on the search path
for p in tree T .

The total space requirements is therefore O(n log n).

Range searching in the plane using range
trees

a b

We perform 1-d range queries with the y-range [c, d] in each of the
subtrees adjacent to the left and right search paths for the x-range
[a, b] in the tree T .

Since the search path is O(log n) in size, and each y-range query
requires O(log n) time, the total cost of searching is O(log2 n).
The reporting cost is O(k) where k points lie in the query
rectangle.

Finding intervals containing a query point

A

B

C

D

E

F

G

H

xquery

queryx’

y’

y

Simpler queries ask for reporting all intervals intersecting the
vertical line X = xquery .

More difficult queries ask for reporting all intervals intersecting a
vertical segment joining (x ′query , y) and (x ′query , y

′).

Computing the interval tree

1. F

2. F

1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L
R

I

The set M has intervals intersecting the vertical line X = xmid ,
where xmid is the median of the x-coordinates of the 2n endpoints.

The root node has intervals M sorted in two independent orders (i)
by right end points (B-E-A), and (ii) left end points (A-E-B).

Answering queries using an interval tree

1. F

2. F

1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L
R

I

The set L and R have at most n endpoints each.

So they have at most n
2 intervals each.

Clearly, the cost of (recursively) building the interval tree is
O(n log n).

The space required is linear.

Answering queries using an interval tree

xmidxquery queryx’

A

B

C

D

E

F

G

H

List 2List 1

(Only A & E) (Only B)

M

A,E,B B,E,A

R

L

For xquery < xmid , we do not traverse subtree for subset R.

For x ′query > xmid , we do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n + k).

Introducing the segment tree

A

B

C

D

B B C

D
C

CD
A

A

For an interval which spans the entire range inv(v), we mark only
internal node v in the segment tree, and not any descendant of v .

We never mark any ancestor of a marked node.

Representing intervals in the segment tree

A

B

C

D

B B C

D
C

CD
A

A

E

E
E

At each level, at most two internal nodes are marked for any given
interval.

Along a root to leaf path an interval is stored only once.

The space requirement is therefore O(n log n).

Reporting intervals containing a given query
point

A

B

C

D

B B C

D
C

CD
A

A

E

E
E

X1

X2
X3

I Search the path in the tree reaching the leaf for the given
query point.

I Report all intervals that appear stored on the search path.

I If k intervals contain the query point then the cost incurred is
O(log n + k).

Reporting intervals containing a given query
point

A

B

C

D

B B C

D
C

CD
A

A

E

E
E

X1

X2
X3

I Search the path in the tree reaching the leaf for the given
query point.

I Report all intervals that appear stored on the search path.

I If k intervals contain the query point then the cost incurred is
O(log n + k).

Reporting intervals containing a given query
point

A

B

C

D

B B C

D
C

CD
A

A

E

E
E

X1

X2
X3

I Search the path in the tree reaching the leaf for the given
query point.

I Report all intervals that appear stored on the search path.

I If k intervals contain the query point then the cost incurred is
O(log n + k).

Reporting segments intersections

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3
4

5

0

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

Check all pairs in O(n2) time.

A vertical line just before any intersection meets intersecting
segments in an empty, intersection-free segment.

Detect intersections by checking consecutive pairs of segments
along a vertical line.

This way, each intersection point can be detected.

Sweeping steps: Endpoints and intersection
points

A

B

C

D

E

F

G

HI

J

K

L

M

N

CD,GH,EF−>CD,EF−>EF,CD

AB−>AB,EF−>CD,AB,EF−>CD,EF−>CD,IJ,EF−>CD,IJ,GH,EF−>CD,GH,IJ,EF

Step 1

A

B

C
D

E

F

GH

I J

K

L

M

O

P

Q

R

S

Z

12

3

4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Step 2

A

B

C
D

E

F

GH

I J

K

L

M

O

P

Q

R

S

Z

12

3

4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Step 3

A

B

C
D

E

F

GH

I J

K

L

M

O

P

Q

R

S

Z

12

3

4

6

7

N

5

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>Z4,FG and DE−−>Z5,NP and FG−−>

Z6,NP−−>Z7, NP and LM

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Many faces complexity in an arangement of lines in the plane.

I We consider the problem of estimating the number K (m, n),
the many faces complexity of edges of m faces in an
arrangement of n lines.

I One way to visualize is to consider a set P of m points in the
plane, and a set L of n lines in the plane. The (at most) m
faces are determined by the m points in the arrangement A(L)
of lines in L.

I We get the inferior upper bound (known as the Canham
bound) of O(m

√
n + n) using the forbidden subgraph property

of the bipartite incidence graph of lines and faces in an
arrangement of lines.

I The forbidden subgraph is K2,5. Using the result by Kovari,
Sos and Turan (Theorem 9.6 in [4]) for such forbidden
component subgraphs, we get the above loose upper bound.
See Pach and Agarwal [4], for a proof of the Kovari, Sos and
Turan result.

Many faces complexity in an arangement of lines in the plane.

I We consider the problem of estimating the number K (m, n),
the many faces complexity of edges of m faces in an
arrangement of n lines.

I One way to visualize is to consider a set P of m points in the
plane, and a set L of n lines in the plane. The (at most) m
faces are determined by the m points in the arrangement A(L)
of lines in L.

I We get the inferior upper bound (known as the Canham
bound) of O(m

√
n + n) using the forbidden subgraph property

of the bipartite incidence graph of lines and faces in an
arrangement of lines.

I The forbidden subgraph is K2,5. Using the result by Kovari,
Sos and Turan (Theorem 9.6 in [4]) for such forbidden
component subgraphs, we get the above loose upper bound.
See Pach and Agarwal [4], for a proof of the Kovari, Sos and
Turan result.

Many faces complexity in an arangement of lines in the plane.

I We consider the problem of estimating the number K (m, n),
the many faces complexity of edges of m faces in an
arrangement of n lines.

I One way to visualize is to consider a set P of m points in the
plane, and a set L of n lines in the plane. The (at most) m
faces are determined by the m points in the arrangement A(L)
of lines in L.

I We get the inferior upper bound (known as the Canham
bound) of O(m

√
n + n) using the forbidden subgraph property

of the bipartite incidence graph of lines and faces in an
arrangement of lines.

I The forbidden subgraph is K2,5. Using the result by Kovari,
Sos and Turan (Theorem 9.6 in [4]) for such forbidden
component subgraphs, we get the above loose upper bound.
See Pach and Agarwal [4], for a proof of the Kovari, Sos and
Turan result.

Many faces complexity in an arangement of lines in the plane.

I We consider the problem of estimating the number K (m, n),
the many faces complexity of edges of m faces in an
arrangement of n lines.

I One way to visualize is to consider a set P of m points in the
plane, and a set L of n lines in the plane. The (at most) m
faces are determined by the m points in the arrangement A(L)
of lines in L.

I We get the inferior upper bound (known as the Canham
bound) of O(m

√
n + n) using the forbidden subgraph property

of the bipartite incidence graph of lines and faces in an
arrangement of lines.

I The forbidden subgraph is K2,5. Using the result by Kovari,
Sos and Turan (Theorem 9.6 in [4]) for such forbidden
component subgraphs, we get the above loose upper bound.
See Pach and Agarwal [4], for a proof of the Kovari, Sos and
Turan result.

I We proceed to use a divide-and-conquer approach as follows,
in order to derive a much better bound that also
asymptotically matches the best known lower bounds (see
Theorem 11.9 of [4]).

I Suppose we form an arrangement with a subset R of size r of
the set L of n lines. The arrangement A(L) is of our interest.

I However, we may first convert A(R) into a trapezoidal map
A∗(R) with k = s ≤ 3r2 trapezoids/triangles as faces, by
dropping plumbline vertical segments from vertices and
intersection points of A(R).

I It is nice if not too many lines from L \ R intersect an
arbitrary trapezoid ∆j of A∗(R), where the (fixed) point
pj ∈ P lies in the (unique) trapezoid ∆j .

I Even if this trapezoid is intersected by qj lines, we wish to
have the expectation E (qj) = O(nr), where the expectation is
over all the

(n
r

)
random samples R ⊂ L.

I This is indeed possible and we show this later using
combinatorial arguments; this is a technical result of
independent and deep import.

I We proceed to use a divide-and-conquer approach as follows,
in order to derive a much better bound that also
asymptotically matches the best known lower bounds (see
Theorem 11.9 of [4]).

I Suppose we form an arrangement with a subset R of size r of
the set L of n lines. The arrangement A(L) is of our interest.

I However, we may first convert A(R) into a trapezoidal map
A∗(R) with k = s ≤ 3r2 trapezoids/triangles as faces, by
dropping plumbline vertical segments from vertices and
intersection points of A(R).

I It is nice if not too many lines from L \ R intersect an
arbitrary trapezoid ∆j of A∗(R), where the (fixed) point
pj ∈ P lies in the (unique) trapezoid ∆j .

I Even if this trapezoid is intersected by qj lines, we wish to
have the expectation E (qj) = O(nr), where the expectation is
over all the

(n
r

)
random samples R ⊂ L.

I This is indeed possible and we show this later using
combinatorial arguments; this is a technical result of
independent and deep import.

I We proceed to use a divide-and-conquer approach as follows,
in order to derive a much better bound that also
asymptotically matches the best known lower bounds (see
Theorem 11.9 of [4]).

I Suppose we form an arrangement with a subset R of size r of
the set L of n lines. The arrangement A(L) is of our interest.

I However, we may first convert A(R) into a trapezoidal map
A∗(R) with k = s ≤ 3r2 trapezoids/triangles as faces, by
dropping plumbline vertical segments from vertices and
intersection points of A(R).

I It is nice if not too many lines from L \ R intersect an
arbitrary trapezoid ∆j of A∗(R), where the (fixed) point
pj ∈ P lies in the (unique) trapezoid ∆j .

I Even if this trapezoid is intersected by qj lines, we wish to
have the expectation E (qj) = O(nr), where the expectation is
over all the

(n
r

)
random samples R ⊂ L.

I This is indeed possible and we show this later using
combinatorial arguments; this is a technical result of
independent and deep import.

I We proceed to use a divide-and-conquer approach as follows,
in order to derive a much better bound that also
asymptotically matches the best known lower bounds (see
Theorem 11.9 of [4]).

I Suppose we form an arrangement with a subset R of size r of
the set L of n lines. The arrangement A(L) is of our interest.

I However, we may first convert A(R) into a trapezoidal map
A∗(R) with k = s ≤ 3r2 trapezoids/triangles as faces, by
dropping plumbline vertical segments from vertices and
intersection points of A(R).

I It is nice if not too many lines from L \ R intersect an
arbitrary trapezoid ∆j of A∗(R), where the (fixed) point
pj ∈ P lies in the (unique) trapezoid ∆j .

I Even if this trapezoid is intersected by qj lines, we wish to
have the expectation E (qj) = O(nr), where the expectation is
over all the

(n
r

)
random samples R ⊂ L.

I This is indeed possible and we show this later using
combinatorial arguments; this is a technical result of
independent and deep import.

I We proceed to use a divide-and-conquer approach as follows,
in order to derive a much better bound that also
asymptotically matches the best known lower bounds (see
Theorem 11.9 of [4]).

I Suppose we form an arrangement with a subset R of size r of
the set L of n lines. The arrangement A(L) is of our interest.

I However, we may first convert A(R) into a trapezoidal map
A∗(R) with k = s ≤ 3r2 trapezoids/triangles as faces, by
dropping plumbline vertical segments from vertices and
intersection points of A(R).

I It is nice if not too many lines from L \ R intersect an
arbitrary trapezoid ∆j of A∗(R), where the (fixed) point
pj ∈ P lies in the (unique) trapezoid ∆j .

I Even if this trapezoid is intersected by qj lines, we wish to
have the expectation E (qj) = O(nr), where the expectation is
over all the

(n
r

)
random samples R ⊂ L.

I This is indeed possible and we show this later using
combinatorial arguments; this is a technical result of
independent and deep import.

I We proceed to use a divide-and-conquer approach as follows,
in order to derive a much better bound that also
asymptotically matches the best known lower bounds (see
Theorem 11.9 of [4]).

I Suppose we form an arrangement with a subset R of size r of
the set L of n lines. The arrangement A(L) is of our interest.

I However, we may first convert A(R) into a trapezoidal map
A∗(R) with k = s ≤ 3r2 trapezoids/triangles as faces, by
dropping plumbline vertical segments from vertices and
intersection points of A(R).

I It is nice if not too many lines from L \ R intersect an
arbitrary trapezoid ∆j of A∗(R), where the (fixed) point
pj ∈ P lies in the (unique) trapezoid ∆j .

I Even if this trapezoid is intersected by qj lines, we wish to
have the expectation E (qj) = O(nr), where the expectation is
over all the

(n
r

)
random samples R ⊂ L.

I This is indeed possible and we show this later using
combinatorial arguments; this is a technical result of
independent and deep import.

I Let the face ∆i of A∗(R) intersect ni lines of L \ R and
contain mi of the m points from the point set P.

I Here, the set Li of lines from L \ R that intersect ∆i , form an
arrangement A(Li); the convex faces (cells) in A(Li) are just
the faces of arrangements A(L) or A(R).

I In contrast, by the very definition of A∗, all A∗(R), A∗(L) and
A∗(Li) have only trapezoids and triangles for faces (or cells).

I Now, using recursion we write
K (m, n) ≤

∑s
i=1 K (mi , ni) + O(nr) We explain the O(nr)

term using the zone theorem and its non-trivial application

I Using the Canham bound, can write
K (m, n) ≤

∑s
i=1(mi

√
ni + ni) + O(nr)

I Let the face ∆i of A∗(R) intersect ni lines of L \ R and
contain mi of the m points from the point set P.

I Here, the set Li of lines from L \ R that intersect ∆i , form an
arrangement A(Li); the convex faces (cells) in A(Li) are just
the faces of arrangements A(L) or A(R).

I In contrast, by the very definition of A∗, all A∗(R), A∗(L) and
A∗(Li) have only trapezoids and triangles for faces (or cells).

I Now, using recursion we write
K (m, n) ≤

∑s
i=1 K (mi , ni) + O(nr) We explain the O(nr)

term using the zone theorem and its non-trivial application

I Using the Canham bound, can write
K (m, n) ≤

∑s
i=1(mi

√
ni + ni) + O(nr)

I Let the face ∆i of A∗(R) intersect ni lines of L \ R and
contain mi of the m points from the point set P.

I Here, the set Li of lines from L \ R that intersect ∆i , form an
arrangement A(Li); the convex faces (cells) in A(Li) are just
the faces of arrangements A(L) or A(R).

I In contrast, by the very definition of A∗, all A∗(R), A∗(L) and
A∗(Li) have only trapezoids and triangles for faces (or cells).

I Now, using recursion we write
K (m, n) ≤

∑s
i=1 K (mi , ni) + O(nr) We explain the O(nr)

term using the zone theorem and its non-trivial application

I Using the Canham bound, can write
K (m, n) ≤

∑s
i=1(mi

√
ni + ni) + O(nr)

I Let the face ∆i of A∗(R) intersect ni lines of L \ R and
contain mi of the m points from the point set P.

I Here, the set Li of lines from L \ R that intersect ∆i , form an
arrangement A(Li); the convex faces (cells) in A(Li) are just
the faces of arrangements A(L) or A(R).

I In contrast, by the very definition of A∗, all A∗(R), A∗(L) and
A∗(Li) have only trapezoids and triangles for faces (or cells).

I Now, using recursion we write
K (m, n) ≤

∑s
i=1 K (mi , ni) + O(nr) We explain the O(nr)

term using the zone theorem and its non-trivial application

I Using the Canham bound, can write
K (m, n) ≤

∑s
i=1(mi

√
ni + ni) + O(nr)

I Let the face ∆i of A∗(R) intersect ni lines of L \ R and
contain mi of the m points from the point set P.

I Here, the set Li of lines from L \ R that intersect ∆i , form an
arrangement A(Li); the convex faces (cells) in A(Li) are just
the faces of arrangements A(L) or A(R).

I In contrast, by the very definition of A∗, all A∗(R), A∗(L) and
A∗(Li) have only trapezoids and triangles for faces (or cells).

I Now, using recursion we write
K (m, n) ≤

∑s
i=1 K (mi , ni) + O(nr) We explain the O(nr)

term using the zone theorem and its non-trivial application

I Using the Canham bound, can write
K (m, n) ≤

∑s
i=1(mi

√
ni + ni) + O(nr)

I We use the existence of random sample R of size r and
establish the upper bound

∑s
i=1mi (ni)

α = O(m(nr)α) by
showing that the expectation of the summation in the LHS
above is bounded as O(m(nr)α).

I This bound is established in part (ii) of Theorem 11.2 in [4];
part (i) of the same theorem claims that Σs

i=1ni ≤ c1nr ,
which holds for any R ⊂ L, where |R| = r .

I So, we can write K (m, n) ≤ O(m(n/r)
1
2) + O(nr)

I Now, by setting r = min(n, m
2
3

n
1
3

) we get nr = (mn)
2
3 and

therefore, K (m, n) = O(m
2
3 n

2
3 + n).

I We use the existence of random sample R of size r and
establish the upper bound

∑s
i=1mi (ni)

α = O(m(nr)α) by
showing that the expectation of the summation in the LHS
above is bounded as O(m(nr)α).

I This bound is established in part (ii) of Theorem 11.2 in [4];
part (i) of the same theorem claims that Σs

i=1ni ≤ c1nr ,
which holds for any R ⊂ L, where |R| = r .

I So, we can write K (m, n) ≤ O(m(n/r)
1
2) + O(nr)

I Now, by setting r = min(n, m
2
3

n
1
3

) we get nr = (mn)
2
3 and

therefore, K (m, n) = O(m
2
3 n

2
3 + n).

I We use the existence of random sample R of size r and
establish the upper bound

∑s
i=1mi (ni)

α = O(m(nr)α) by
showing that the expectation of the summation in the LHS
above is bounded as O(m(nr)α).

I This bound is established in part (ii) of Theorem 11.2 in [4];
part (i) of the same theorem claims that Σs

i=1ni ≤ c1nr ,
which holds for any R ⊂ L, where |R| = r .

I So, we can write K (m, n) ≤ O(m(n/r)
1
2) + O(nr)

I Now, by setting r = min(n, m
2
3

n
1
3

) we get nr = (mn)
2
3 and

therefore, K (m, n) = O(m
2
3 n

2
3 + n).

I We use the existence of random sample R of size r and
establish the upper bound

∑s
i=1mi (ni)

α = O(m(nr)α) by
showing that the expectation of the summation in the LHS
above is bounded as O(m(nr)α).

I This bound is established in part (ii) of Theorem 11.2 in [4];
part (i) of the same theorem claims that Σs

i=1ni ≤ c1nr ,
which holds for any R ⊂ L, where |R| = r .

I So, we can write K (m, n) ≤ O(m(n/r)
1
2) + O(nr)

I Now, by setting r = min(n, m
2
3

n
1
3

) we get nr = (mn)
2
3 and

therefore, K (m, n) = O(m
2
3 n

2
3 + n).

Planar embeddings and crossing numbers

I An embedding of a graph G = (V ,E) in the plane is a planar
representation of it, where each vertex is represented by a
point in the plane, and each edge {u, v} is represented by a
curve connecting the points corresponding to the vertices u
and v .

I The crossing number of such an embedding is the number of
pairs of intersecting curves that correspond to pairs of edges
with no common endpoints.

I The crossing number cr(G) of G is the minimum possible
crossing number in an embedding of it in the plane.

I The only and trivial planar embedding of the graph K3 has
crossing number 0. Hence it is a planar graph.

I The complete graph K4 of four vertices has crossing number o
as well. In every planar embedding, the graph K5 has at least
one pair of edges crossing. Hence, it is a non-planar graph.
K3,3 also has crossing number 1.

Planar embeddings and crossing numbers

I An embedding of a graph G = (V ,E) in the plane is a planar
representation of it, where each vertex is represented by a
point in the plane, and each edge {u, v} is represented by a
curve connecting the points corresponding to the vertices u
and v .

I The crossing number of such an embedding is the number of
pairs of intersecting curves that correspond to pairs of edges
with no common endpoints.

I The crossing number cr(G) of G is the minimum possible
crossing number in an embedding of it in the plane.

I The only and trivial planar embedding of the graph K3 has
crossing number 0. Hence it is a planar graph.

I The complete graph K4 of four vertices has crossing number o
as well. In every planar embedding, the graph K5 has at least
one pair of edges crossing. Hence, it is a non-planar graph.
K3,3 also has crossing number 1.

Planar embeddings and crossing numbers

I An embedding of a graph G = (V ,E) in the plane is a planar
representation of it, where each vertex is represented by a
point in the plane, and each edge {u, v} is represented by a
curve connecting the points corresponding to the vertices u
and v .

I The crossing number of such an embedding is the number of
pairs of intersecting curves that correspond to pairs of edges
with no common endpoints.

I The crossing number cr(G) of G is the minimum possible
crossing number in an embedding of it in the plane.

I The only and trivial planar embedding of the graph K3 has
crossing number 0. Hence it is a planar graph.

I The complete graph K4 of four vertices has crossing number o
as well. In every planar embedding, the graph K5 has at least
one pair of edges crossing. Hence, it is a non-planar graph.
K3,3 also has crossing number 1.

Planar embeddings and crossing numbers

I An embedding of a graph G = (V ,E) in the plane is a planar
representation of it, where each vertex is represented by a
point in the plane, and each edge {u, v} is represented by a
curve connecting the points corresponding to the vertices u
and v .

I The crossing number of such an embedding is the number of
pairs of intersecting curves that correspond to pairs of edges
with no common endpoints.

I The crossing number cr(G) of G is the minimum possible
crossing number in an embedding of it in the plane.

I The only and trivial planar embedding of the graph K3 has
crossing number 0. Hence it is a planar graph.

I The complete graph K4 of four vertices has crossing number o
as well. In every planar embedding, the graph K5 has at least
one pair of edges crossing. Hence, it is a non-planar graph.
K3,3 also has crossing number 1.

Planar embeddings and crossing numbers

I An embedding of a graph G = (V ,E) in the plane is a planar
representation of it, where each vertex is represented by a
point in the plane, and each edge {u, v} is represented by a
curve connecting the points corresponding to the vertices u
and v .

I The crossing number of such an embedding is the number of
pairs of intersecting curves that correspond to pairs of edges
with no common endpoints.

I The crossing number cr(G) of G is the minimum possible
crossing number in an embedding of it in the plane.

I The only and trivial planar embedding of the graph K3 has
crossing number 0. Hence it is a planar graph.

I The complete graph K4 of four vertices has crossing number o
as well. In every planar embedding, the graph K5 has at least
one pair of edges crossing. Hence, it is a non-planar graph.
K3,3 also has crossing number 1.

I Kuratowski showed 1930 that a graph is planar if and only if
it has no subgraph homeomorphic to K5 or K3,3.

I The following Crossing Number Theorem was proved by Ajtai,
Chvatal, Newborn and Szemeredi in 1982, and independently,
by Leighton.

I The crossing number of any simple graph (i.e., a graph with
no multi-edges or no self-loops) with |E | ≥ 4|V | is at least
|E |3/64|V |2.

I We know Eulers formula for any spherical polyhedron, with
|V | vertices, |E | edges and |F | faces, |V | − |E |+ |F | = 2.

I Any maximal planar graph (i.e., one to which no edge can be
added without losing planarity) has triangular |F | triangular
faces implying 3|F | = 2|E |.

I Hence, for any simple planar graph with |V | = n ≥ 3 vertices,
we have |E | = |V |+ |F | − 2 ≤ |V |+ (2/3)|E | − 2 or
|E | ≤ 3n − 6, implying that it has at most 3n edges.

I Therefore, the crossing number of any simple graph with n
vertices and m edges is at least m − 3n.

I Kuratowski showed 1930 that a graph is planar if and only if
it has no subgraph homeomorphic to K5 or K3,3.

I The following Crossing Number Theorem was proved by Ajtai,
Chvatal, Newborn and Szemeredi in 1982, and independently,
by Leighton.

I The crossing number of any simple graph (i.e., a graph with
no multi-edges or no self-loops) with |E | ≥ 4|V | is at least
|E |3/64|V |2.

I We know Eulers formula for any spherical polyhedron, with
|V | vertices, |E | edges and |F | faces, |V | − |E |+ |F | = 2.

I Any maximal planar graph (i.e., one to which no edge can be
added without losing planarity) has triangular |F | triangular
faces implying 3|F | = 2|E |.

I Hence, for any simple planar graph with |V | = n ≥ 3 vertices,
we have |E | = |V |+ |F | − 2 ≤ |V |+ (2/3)|E | − 2 or
|E | ≤ 3n − 6, implying that it has at most 3n edges.

I Therefore, the crossing number of any simple graph with n
vertices and m edges is at least m − 3n.

I Kuratowski showed 1930 that a graph is planar if and only if
it has no subgraph homeomorphic to K5 or K3,3.

I The following Crossing Number Theorem was proved by Ajtai,
Chvatal, Newborn and Szemeredi in 1982, and independently,
by Leighton.

I The crossing number of any simple graph (i.e., a graph with
no multi-edges or no self-loops) with |E | ≥ 4|V | is at least
|E |3/64|V |2.

I We know Eulers formula for any spherical polyhedron, with
|V | vertices, |E | edges and |F | faces, |V | − |E |+ |F | = 2.

I Any maximal planar graph (i.e., one to which no edge can be
added without losing planarity) has triangular |F | triangular
faces implying 3|F | = 2|E |.

I Hence, for any simple planar graph with |V | = n ≥ 3 vertices,
we have |E | = |V |+ |F | − 2 ≤ |V |+ (2/3)|E | − 2 or
|E | ≤ 3n − 6, implying that it has at most 3n edges.

I Therefore, the crossing number of any simple graph with n
vertices and m edges is at least m − 3n.

I Kuratowski showed 1930 that a graph is planar if and only if
it has no subgraph homeomorphic to K5 or K3,3.

I The following Crossing Number Theorem was proved by Ajtai,
Chvatal, Newborn and Szemeredi in 1982, and independently,
by Leighton.

I The crossing number of any simple graph (i.e., a graph with
no multi-edges or no self-loops) with |E | ≥ 4|V | is at least
|E |3/64|V |2.

I We know Eulers formula for any spherical polyhedron, with
|V | vertices, |E | edges and |F | faces, |V | − |E |+ |F | = 2.

I Any maximal planar graph (i.e., one to which no edge can be
added without losing planarity) has triangular |F | triangular
faces implying 3|F | = 2|E |.

I Hence, for any simple planar graph with |V | = n ≥ 3 vertices,
we have |E | = |V |+ |F | − 2 ≤ |V |+ (2/3)|E | − 2 or
|E | ≤ 3n − 6, implying that it has at most 3n edges.

I Therefore, the crossing number of any simple graph with n
vertices and m edges is at least m − 3n.

I Kuratowski showed 1930 that a graph is planar if and only if
it has no subgraph homeomorphic to K5 or K3,3.

I The following Crossing Number Theorem was proved by Ajtai,
Chvatal, Newborn and Szemeredi in 1982, and independently,
by Leighton.

I The crossing number of any simple graph (i.e., a graph with
no multi-edges or no self-loops) with |E | ≥ 4|V | is at least
|E |3/64|V |2.

I We know Eulers formula for any spherical polyhedron, with
|V | vertices, |E | edges and |F | faces, |V | − |E |+ |F | = 2.

I Any maximal planar graph (i.e., one to which no edge can be
added without losing planarity) has triangular |F | triangular
faces implying 3|F | = 2|E |.

I Hence, for any simple planar graph with |V | = n ≥ 3 vertices,
we have |E | = |V |+ |F | − 2 ≤ |V |+ (2/3)|E | − 2 or
|E | ≤ 3n − 6, implying that it has at most 3n edges.

I Therefore, the crossing number of any simple graph with n
vertices and m edges is at least m − 3n.

I Kuratowski showed 1930 that a graph is planar if and only if
it has no subgraph homeomorphic to K5 or K3,3.

I The following Crossing Number Theorem was proved by Ajtai,
Chvatal, Newborn and Szemeredi in 1982, and independently,
by Leighton.

I The crossing number of any simple graph (i.e., a graph with
no multi-edges or no self-loops) with |E | ≥ 4|V | is at least
|E |3/64|V |2.

I We know Eulers formula for any spherical polyhedron, with
|V | vertices, |E | edges and |F | faces, |V | − |E |+ |F | = 2.

I Any maximal planar graph (i.e., one to which no edge can be
added without losing planarity) has triangular |F | triangular
faces implying 3|F | = 2|E |.

I Hence, for any simple planar graph with |V | = n ≥ 3 vertices,
we have |E | = |V |+ |F | − 2 ≤ |V |+ (2/3)|E | − 2 or
|E | ≤ 3n − 6, implying that it has at most 3n edges.

I Therefore, the crossing number of any simple graph with n
vertices and m edges is at least m − 3n.

I Kuratowski showed 1930 that a graph is planar if and only if
it has no subgraph homeomorphic to K5 or K3,3.

I The following Crossing Number Theorem was proved by Ajtai,
Chvatal, Newborn and Szemeredi in 1982, and independently,
by Leighton.

I The crossing number of any simple graph (i.e., a graph with
no multi-edges or no self-loops) with |E | ≥ 4|V | is at least
|E |3/64|V |2.

I We know Eulers formula for any spherical polyhedron, with
|V | vertices, |E | edges and |F | faces, |V | − |E |+ |F | = 2.

I Any maximal planar graph (i.e., one to which no edge can be
added without losing planarity) has triangular |F | triangular
faces implying 3|F | = 2|E |.

I Hence, for any simple planar graph with |V | = n ≥ 3 vertices,
we have |E | = |V |+ |F | − 2 ≤ |V |+ (2/3)|E | − 2 or
|E | ≤ 3n − 6, implying that it has at most 3n edges.

I Therefore, the crossing number of any simple graph with n
vertices and m edges is at least m − 3n.

I Let G = (V ,E) be a graph with |E | ≥ 4|V | embedded in the
plane with t = cr(G) crossings.

I Let H be the random induced subgraph of G obtained by
picking each vertex of G , randomly and independently, to be
a vertex of H with probability p (whose value is to be chosen
later).

I Then, the expected number of vertices in H is p|V |, the
expected number of edges is p2|E |, and the expected number
of crossings (in its given embedding) is p4t.

I Therefore, we have p4t ≥ p2|E | − 3p|V |, implying
t ≥ |E |/p2 − 3|V |/p3.

I Substituting p = 4|V |/|E |, which is less than one, we get the
result.

I Let G = (V ,E) be a graph with |E | ≥ 4|V | embedded in the
plane with t = cr(G) crossings.

I Let H be the random induced subgraph of G obtained by
picking each vertex of G , randomly and independently, to be
a vertex of H with probability p (whose value is to be chosen
later).

I Then, the expected number of vertices in H is p|V |, the
expected number of edges is p2|E |, and the expected number
of crossings (in its given embedding) is p4t.

I Therefore, we have p4t ≥ p2|E | − 3p|V |, implying
t ≥ |E |/p2 − 3|V |/p3.

I Substituting p = 4|V |/|E |, which is less than one, we get the
result.

I Let G = (V ,E) be a graph with |E | ≥ 4|V | embedded in the
plane with t = cr(G) crossings.

I Let H be the random induced subgraph of G obtained by
picking each vertex of G , randomly and independently, to be
a vertex of H with probability p (whose value is to be chosen
later).

I Then, the expected number of vertices in H is p|V |, the
expected number of edges is p2|E |, and the expected number
of crossings (in its given embedding) is p4t.

I Therefore, we have p4t ≥ p2|E | − 3p|V |, implying
t ≥ |E |/p2 − 3|V |/p3.

I Substituting p = 4|V |/|E |, which is less than one, we get the
result.

I Let G = (V ,E) be a graph with |E | ≥ 4|V | embedded in the
plane with t = cr(G) crossings.

I Let H be the random induced subgraph of G obtained by
picking each vertex of G , randomly and independently, to be
a vertex of H with probability p (whose value is to be chosen
later).

I Then, the expected number of vertices in H is p|V |, the
expected number of edges is p2|E |, and the expected number
of crossings (in its given embedding) is p4t.

I Therefore, we have p4t ≥ p2|E | − 3p|V |, implying
t ≥ |E |/p2 − 3|V |/p3.

I Substituting p = 4|V |/|E |, which is less than one, we get the
result.

I Let G = (V ,E) be a graph with |E | ≥ 4|V | embedded in the
plane with t = cr(G) crossings.

I Let H be the random induced subgraph of G obtained by
picking each vertex of G , randomly and independently, to be
a vertex of H with probability p (whose value is to be chosen
later).

I Then, the expected number of vertices in H is p|V |, the
expected number of edges is p2|E |, and the expected number
of crossings (in its given embedding) is p4t.

I Therefore, we have p4t ≥ p2|E | − 3p|V |, implying
t ≥ |E |/p2 − 3|V |/p3.

I Substituting p = 4|V |/|E |, which is less than one, we get the
result.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark
Overmars, Computational Geometry: Algorithms and
Applications (3rd ed.), TELOS, Santa Clara, CA, USA, 2008.

Jiri Matousek, Lectures on Discrete Geometry, Springer.

Ketan Mulmuley, Computational Geometry: An Introduction
Through Randomized Algorithms, Prentice Hall, 1994.

Janos Pach and Pankaj Agarwal, Combinatorial Geometry,
Wiley-Interscience Series in Discrete Mathematics and
Optimization, 1995.

B. Chazelle, The discrepancy method: Randomness and
complexity, Cambridge University Press, 2000.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to
algorithms, Second Edition, Prentice-Hall India, 2003.

Udi Manber, Introduction to algorithms: A creative approach,
Addision-Wesley, 1989.

R. Motwani and P. Raghavan, Randomized algorithms,
Cambridge University Press, 1995.

	Scope
	Range searching
	Many faces bounds

