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BINARY SEARCH TREES, RANGE TREES AND KD-TREES

We consider 1-d and 2-d range queries for point sets.

INTERVAL TREES AND SEGMENT TREE
Interval trees for reporting all intervals on a line containing a given
query point on the line.

PARADIGM OF SWEEP ALGORITHMS
For reporting intersections of line segments, and for computing
visible regions.

FINGER SEARCHING
Computing shortest path trees in linear time.

HIERARCHICAL SEARCHING
Planar point location
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» Problem: Given a set P of n points {p1, p2, -, pn} on the
real line, report points of P that lie in the range [a, b], a < b.

> Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

» However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.
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1-DIMENSIONAL RANGE SEARCHING

2 4 7 13 20 22 26

Search range [6,25] Report 7,13,20,22

> We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

» Each internal node stores the x-coordinate of the rightmost
point in its left subtree for guiding search.



2-DIMENSIONAL RANGE SEARCHING
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» Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.
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» Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

» Here, the points inside R are 14, 12 and 17.
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» Using two 1-d range queries, one along each axis, solves the
2-d range query.
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» Using two 1-d range queries, one along each axis, solves the
2-d range query.

» The cost incurred may exceed the actual output size of the
2-d range query.



2-DIMENSIONAL RANGE SEARCHING: KD-TREES
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2-DIMENSIONAL RANGE SEARCHING
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» The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

» The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S, so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

» The entire plane is called the region(r).



ANSWERING RECTANGLE QUERIES
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» A query rectangle @ may overlap a region or completely

contain a region.
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» A query rectangle @ may overlap a region or completely
contain a region.

» If R contains the entire bounded region(p) of a point p
defining a node of T then report all points in region(p).



2-DIMENSIONAL RANGE SEARCHING: KD-TREES [1]
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» The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y-coordinate in the set L (R), and including v in LU (RU).
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» The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y-coordinate in the set L (R), and including v in LU (RU).

» The entire halfplane containing set L (R) is called the
region(u) (region(v)).



TIME COMPLEXITY OF RECTANGLE QUERIES
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TIME COMPLEXITY OF OUTPUT POINT REPORTING

» Reporting points within R contributes to the output size k for
the query.
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internal nodes traversed in T.



TIME COMPLEXITY OF OUTPUT POINT REPORTING

» Reporting points within R contributes to the output size k for
the query.

> No leaf level region in T has more than 2 points.

» So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T.

» This cost is borne for all leaf level regions intersected by R.



TIME COMPLEXITY OF TRAVERSING THE TREE
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TIME COMPLEXITY OF TRAVERSING THE TREE

LDe i3

» It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

> Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

> Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).
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» Therefore, the time complexity T(n) for an n-vertex Kd-tree
obeys the recurrence relation

T(n) =2+27(3)
T(1)=1
» The solution for T(n) = O(/(n)).

» The total cost of reporting k points in R is therefore

O(+\/(n) + k).



RANGE SEARCHING WITH KD-TREES AND RANGE
TREES

» Given a set S of n points in the plane, we can construct a
Kd-tree in O(nlog n) time and O(n) space, so that rectangle
queries can be executed in O(y/n + k) time. Here, the
number of points in the query rectangle is k.
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RANGE SEARCHING WITH KD-TREES AND RANGE
TREES

» Given a set S of n points in the plane, we can construct a
Kd-tree in O(nlog n) time and O(n) space, so that rectangle
queries can be executed in O(y/n + k) time. Here, the
number of points in the query rectangle is k.

> Given a set S of n points in the plane, we can construct a
range tree in O(nlog n) time and space, so that rectangle
queries can be executed in O(log? n + k) time.

» The query time can be improved to O(log n + k) using the
technique of fractional cascading.



RANGE SEARCHING IN THE PLANE USING RANGE
TREES

Given a 2-d rectangle query [a, b]X[c, d], we can identify subtrees
whose leaf nodes are in the range [a, b] along the X-direction.

Only a subset of these leaf nodes lie in the range [c, d] along the
Y-direction.



RANGE SEARCHING IN THE PLANE USING RANGE
TREES

o

Tassoc(v) 1 @ binary search tree on y-coordinates for points in the
leaf nodes of the subtree tooted at v in the tree T.

The point p is duplicated in T,s(,) for each v on the search path
for pin tree T.

The total space requirements is therefore O(nlog n).



RANGE SEARCHING IN THE PLANE USING RANGE
TREES

We perform 1-d range queries with the y-range [c, d] in each of the
subtrees adjacent to the left and right search paths for the x-range
[a, b] in the tree T.

Since the search path is O(log n) in size, and each y-range query
requires O(log n) time, the total cost of searching is O(log? n).
The reporting cost is O(k) where k points lie in the query
rectangle.



FINDING INTERVALS CONTAINING A QUERY POINT
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Simpler queries ask for reporting all intervals intersecting the
vertical line X = Xguery-

More difficult queries ask for reporting all intervals intersecting a
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COMPUTING THE INTERVAL TREE

The set M has intervals intersecting the vertical line X = x4,
where x,iq is the median of the x-coordinates of the 2n endpoints.

The root node has intervals M sorted in two independent orders (i)
by right end points (B-E-A), and (ii) left end points (A-E-B).



ANSWERING QUERIES USING AN INTERVAL TREE

The set L and R have at most n endpoints each.
So they have at most 3 intervals each.

Clearly, the cost of (recursively) building the interval tree is
O(nlog n).

The space required is linear.



ANSWERING QUERIES USING AN INTERVAL TREE
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For Xquery < Xmid, we do not traverse subtree for subset K.

For Xguery > Xmid, We do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n + k).



INTRODUCING THE SEGMENT TREE

For an interval which spans the entire range inv(v), we mark only
internal node v in the segment tree, and not any descendant of v.

We never mark any ancestor of a marked node.



REPRESENTING INTERVALS IN THE SEGMENT TREE

At each level, at most two internal nodes are marked for any given
interval.

Along a root to leaf path an interval is stored only once.

The space requirement is therefore O(nlog n).



REPORTING INTERVALS CONTAINING A GIVEN QUERY
POINT
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REPORTING INTERVALS CONTAINING A GIVEN QUERY
POINT
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» Search the path in the tree reaching the leaf for the given
query point.

» Report all intervals that appear stored on the search path.

> If k intervals contain the query point then the cost incurred is
O(log n + k).



REPORTING SEGMENTS INTERSECTIONS

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

Check all pairs in O(n?) time.

A vertical line just before any intersection meets intersecting
segments in an empty, intersection-free segment.

Detect intersections by checking consecutive pairs of segments
along a vertical line.

This way, each intersection point can be detected.



SWEEPING STEPS: ENDPOINTS AND INTERSECTION
POINTS

AB- >AB EF->CD,AB EF-r>CD EF—>CD IJ EF- >CD IJ GH,EF—>CD,GH,IJ,EF
CD, GH EF—>CD,EF- >EF,CD 1.



STEP 1
SQ,SR,DC,1-—>SQ,SR,DE,2—>DE,3—-
FG,FE,DE,4—>NP,NO,FG,FE,.DE,5—>
NP.NO,FG,FE,DE,6—>LM,MK NP,NO,FG,7

H G

Z1 ,SQ——>72,.SQ——>Z3,DE——>
74, FG and DE—>Z5 NP and FG——>

77 NDL_~77 ND arnd 1IN



STEP 2
SQ,SR,DC,1-—>SQ,SR,DE,2—>DE,3—-
FG,FE,DE,4—>NP,NO,FG,FE,.DE,5—>
NP.NO,FG,FE,DE,6—>LM,MK NP,NO,FG,7

Z1 ,SQ——>72,.SQ——>Z3,DE——>
74, FG and DE—>Z5 NP and FG——>

77 NDL_~77 ND arnd 1IN



STEP 3

SQ.SR.DC,1—>SQ,SR.DI
FG.FE.DE ., 4—>NP,NO,FC
NP.NO.FG.FE.DE,6——=>L.1

Z1 .SQ—=Z72,SQ—=>Z3,DE—*4 . FG and DE—>Z5 NP and FG——:
Z6 NP—=>=Z"7, NP and LM

A



MANY FACES COMPLEXITY IN AN ARANGEMENT OF LINES IN THE PLANE.

» We consider the problem of estimating the number K(m, n),
the many faces complexity of edges of m faces in an
arrangement of n lines.
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COMPLEXITY IN AN ARANGEMENT OF LINES IN THE PLANE.

We consider the problem of estimating the number K(m, n),
the many faces complexity of edges of m faces in an
arrangement of n lines.

One way to visualize is to consider a set P of m points in the
plane, and a set L of n lines in the plane. The (at most) m
faces are determined by the m points in the arrangement A(L)
of lines in L.

We get the inferior upper bound (known as the Canham
bound) of O(m+/n+ n) using the forbidden subgraph property
of the bipartite incidence graph of lines and faces in an
arrangement of lines.

The forbidden subgraph is Ky 5. Using the result by Kovari,
Sos and Turan (Theorem 9.6 in [4]) for such forbidden
component subgraphs, we get the above loose upper bound.
See Pach and Agarwal [4], for a proof of the Kovari, Sos and
Turan result.
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We proceed to use a divide-and-conquer approach as follows,
in order to derive a much better bound that also
asymptotically matches the best known lower bounds (see
Theorem 11.9 of [4]).

Suppose we form an arrangement with a subset R of size r of
the set L of n lines. The arrangement A(L) is of our interest.
However, we may first convert A(R) into a trapezoidal map
A*(R) with k = s < 3r? trapezoids/triangles as faces, by
dropping plumbline vertical segments from vertices and
intersection points of A(R).

It is nice if not too many lines from L\ R intersect an
arbitrary trapezoid A; of A*(R), where the (fixed) point

pj € P lies in the (unique) trapezoid A;.

Even if this trapezoid is intersected by g; lines, we wish to
have the expectation E(q;) = O(?), where the expectation is
over all the (") random samples R C L.

This is indeed possible and we show this later using
combinatorial arguments; this is a technical result of
independent and deep import.
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Let the face A; of A*(R) intersect n; lines of L\ R and
contain m; of the m points from the point set P.

Here, the set L; of lines from L\ R that intersect A;, form an
arrangement A(L;); the convex faces (cells) in A(L;) are just
the faces of arrangements A(L) or A(R).

In contrast, by the very definition of A*, all A*(R), A*(L) and
A*(L;) have only trapezoids and triangles for faces (or cells).

Now, using recursion we write
K(m,n) <37 K(mj, nj) + O(nr) We explain the O(nr)
term using the zone theorem and its non-trivial application

Using the Canham bound, can write
K(m,n) <37 1(miv/n; + nj) + O(nr)
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We use the existence of random sample R of size r and
establish the upper bound >°7 | m;(n;)* = O(m(2)*) by
showing that the expectation of the summation in the LHS
above is bounded as O(m(7)%).

This bound is established in part (ii) of Theorem 11.2 in [4];
part (i) of the same theorem claims that X3_,n; < cynr,
which holds for any R C L, where |R| =r.

So, we can write K(m, n) < ( (n/ ) )+ O(nr)

Now, by setting r = min(n, m—l) we get nr = (mn)% and
n3
g

therefore, K(m, n) = O(m3n3 + n).
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PLANAR EMBEDDINGS AND crossing numbers
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An embedding of a graph G = (V/, E) in the plane is a planar
representation of it, where each vertex is represented by a
point in the plane, and each edge {u, v} is represented by a
curve connecting the points corresponding to the vertices u
and v.

The crossing number of such an embedding is the number of
pairs of intersecting curves that correspond to pairs of edges
with no common endpoints.

The crossing number cr(G) of G is the minimum possible
crossing number in an embedding of it in the plane.

The only and trivial planar embedding of the graph K3 has
crossing number 0. Hence it is a planar graph.

The complete graph Ky of four vertices has crossing number o
as well. In every planar embedding, the graph Ks has at least
one pair of edges crossing. Hence, it is a non-planar graph.
K33 also has crossing number 1.
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Kuratowski showed 1930 that a graph is planar if and only if
it has no subgraph homeomorphic to Ks or K3 3.

The following Crossing Number Theorem was proved by Ajtai,
Chvatal, Newborn and Szemeredi in 1982, and independently,
by Leighton.

The crossing number of any simple graph (i.e., a graph with
no multi-edges or no self-loops) with |E| > 4|V/| is at least
[EF /64| V2.

We know Eulers formula for any spherical polyhedron, with
|V| vertices, |E| edges and |F]| faces, |V| — |E| + |F| = 2.
Any maximal planar graph (i.e., one to which no edge can be
added without losing planarity) has triangular |F| triangular
faces implying 3|F| = 2|E]|.

Hence, for any simple planar graph with |V| = n > 3 vertices,
we have |[E| = |V|+|F| =2 < |V|+(2/3)|E| — 2 or

|E| < 3n— 6, implying that it has at most 3n edges.
Therefore, the crossing number of any simple graph with n
vertices and m edges is at least m — 3n.
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Let G = (V, E) be a graph with |E| > 4|V/| embedded in the
plane with t = cr(G) crossings.

Let H be the random induced subgraph of G obtained by
picking each vertex of G, randomly and independently, to be
a vertex of H with probability p (whose value is to be chosen
later).

Then, the expected number of vertices in H is p|V/|, the
expected number of edges is p?|E|, and the expected number
of crossings (in its given embedding) is p*t.

Therefore, we have p*t > p?|E| — 3p|V/|, implying

t > |E|/p? - 3|VI/p*.

Substituting p = 4|V/|/|E|, which is less than one, we get the
result.
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